水が鮮新世の地層の地下水へ徐々に移行していることを暗示している。

（2）地下水

石狩平野における地下水利用の中心は、いわずもしくは札幌市街地である。札幌市街地は、主要部が豊平川扇状地に位置しており、地下水採水には最も恵まれた位置にある。したがって、最近の地下水揚水量の増加（表 2-1-13）にもかかわらず、地下水頭の低下は微少であり、地盤沈下もほとんど発生していない。これは、扇状地への河川水の補給が調沢に行われるとともに、札幌市街地の地盤が砂疊質地盤であるためと考えられる。

しかしながら、大部分が細粒軟質堆積物からなる石狩低地においては扇状地部と事実を異にし、地盤沈下現象が現われはじめている。札幌市、北海道立地下資源調査所および国土理研などで実施された石狩低地の水準測量によれば、1975 年から 1978 年の 3 年間における最大累計沈下量は、扇状地のすぐ北側の白石区東米里地区で 32 cm に達している。しかし、この沈下量は滑層にある泥炭層の圧密沈下による部分が多いと考えられている（8）。

（島居栄一郎）

参考文献

（1）北海道立地下資源調査所（1964）：北海道地理地質図編第 8 号札幌および同説明書

（2）北海道立地下資源調査所（1965）：北海道地理地質図編第 8 号札幌別冊，札幌周辺の地盤と地下水

（3）山口久之助（1970）：石狩湾岸低地の地表構造と地下水，北海道立地下資源調査所報告 41

（4）松下勝秀ほか（1972）：札幌・苫小牧低地帯およびその周辺山地の形成過程，地質学集第 7 号

（5）大島和雄（1972）：札幌市周辺の沖積層の地支，北海道土壌肥料研究通信 No.72

（6）藤木忠美（1974）：北海道主産における最終期の河川地形の変動，第四紀研究 Vol.12, No.4

（7）島居栄一郎（1978）：石狩・勇払低地帯地形図，石狩川治水史（1980）北海道開発協会に発表

（8）札幌市環境局（1980）：札幌市の地盤沈下

7. 勇払平野

（1）地形・地質

勇払平野は、かつて浅海であった石狩一勇払低地帯の南部を占め、低温で泥炭地中海が多くウトナイ湖，遠浅湖，弁天沼などの海跡湖がみられる。平野の南は海に関いているが，背後は支笏，恵庭，樫前の大湖を含む正三角台地に囲まれている（図 2-1-23）。

表 2-1-14 は勇払原野の地質層序をまとめたものである。また，図 2-1-24，図 2-1-25 は山口，松下（3）の資料によって作成した地下地質断面である。これらの資料によって地下水の入れるのとしての本地域の地質の概要を説明する。

附則：勇払平野内におけるこれまでの井戸あるいはボーリング資料からは，透水基盤は未だ確認されていない。したがって，確認されている平野下の最古の地層は，鮮新世上部とさ
圧帯水層を形成している。なお、ニタポロ層は地表では東部丘陵に分布し、山口昇一（5）のT1～T2段丘面を形成している。また、美里層は同じくT3段丘面を形成している（図2-1-23）。

下安平層：東部台地でT3段丘（5）をつくっている下安平層の平野地下への連続と思われる埋没段丘堆積層が、美里層相当層の上位にみられる。
第1章 北海道地方の地下水 77

図 2-1-24 勇払平野地質断面（苫小牧一勇払一弁天一浜厚真）
（断面位置は図 2-1-23 参照）（山口原団，筆者一部修正）

図 2-1-25 勇払平野地質断面（苫小牧一沼の端一ウェンナイ）
（断面位置は図 2-1-23 参照）（筆者原団）
地付近では 〜40〜〜50 m の位置に分布する。ほとんどの砂礫質で、良好な帯水層を形成している。

支笏火山噴出物：更新世後期の堆積物と考えられている支笏火山噴出物は、地表では標高 10
〜25 m の T1 段丘を形成して広く分布する。その南方への延長は、平野地上にも跡跡されるが、
市街地向西方にのみ分布し、東方には認められない（図 2-1-24）。厚さは数 m で、比較的層厚変化は少ないが、北から南に次第に深く堆積層下に埋積されている。支笏火山噴出物は、
全体として粗粒、ルーズな堆積物で優れた帯水能を示すと考えられる。

沖積層：低地の表面を覆って堆積層が 20〜30 m の厚さで一様に広く分布するが、安平川、厚
真川沿いでは海面下 40〜45 m の旧河谷を形成して分布している。岩質は、ほとんどの砂礫質で
あるが、旧河谷付近では例外的にシルト質となっている。また、地表近くには 2 m 以下の泥炭

<table>
<thead>
<tr>
<th>表 2-1-15 带水層一覧表</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>带水層群</td>
</tr>
<tr>
<td>深度（m）</td>
</tr>
<tr>
<td>带水層下安平層（上部洪積層）</td>
</tr>
<tr>
<td>層厚（m）</td>
</tr>
<tr>
<td>淹出量（m³/d）</td>
</tr>
<tr>
<td>圧力水頭（地上m）</td>
</tr>
<tr>
<td>水質</td>
</tr>
<tr>
<td>深度（m）</td>
</tr>
<tr>
<td>带水層下安平層（上部洪積層）</td>
</tr>
<tr>
<td>層厚（m）</td>
</tr>
<tr>
<td>淹出量（m³/d）</td>
</tr>
<tr>
<td>圧力水頭（地上m）</td>
</tr>
<tr>
<td>水質</td>
</tr>
<tr>
<td>深度（m）</td>
</tr>
<tr>
<td>带水層下安平層（上部洪積層）</td>
</tr>
<tr>
<td>層厚（m）</td>
</tr>
<tr>
<td>淹出量（m³/d）</td>
</tr>
<tr>
<td>圧力水頭（地上m）</td>
</tr>
<tr>
<td>水質</td>
</tr>
</tbody>
</table>

（文献（1）を島居一部修正）
層が発達し、さらにそれを覆って東前火山灰層が分布している。このように、沖積層は全体とし
て砂礫質で不圧地下水の良好な帯水層となっている。

（2）地下水

蔚別層の砂礫層は、本地域における最深部の帯水層であるが、多少とも固結化が進んでいるた
めか、帯水能は低く、比透出量にして 6 m³/d/m に及びえない。また、それは水質の点などか
ら、化石水的性格のものといわれている。

ニタッポ羅層、美里層、下安平層の帯水層は、水文地質学的には同様な性質を示すので、一括
して論ずることとする。これらの帯水層は、平野地下のほぼ全域に分布し、循環型および停滞型の
地下水を含んでいる。図 2-1-24、図 2-1-25 にみられるように、何層かの帯水層に分けられるが、
下位のほど比透出量、被圧水頭が大で優れた帯水層を示している（表 2-1-15）。また、帯水層
は東方から西方向に向かって傾斜しているが、そのために東方にいくにつれて被圧水頭が低下さ
という事はない。なお、最深部の F/G 砂礫層からの浸水が行われただしたのは最近のことで、
次の表記層は深くなる傾向にある。水質は、垂直的な変化はあまりみられないが、水平方向には
かなり変化がみられる。

支笏火山噴出物は、前述したように、良好な帯水層と
考えられるが、この層から採水している井戸が少なく、
その水文学的な性質はいまのところよくわかっていない。

勇払平野の表層の浅層地下水は、水位の位置によって
火山灰層や泥炭層の影響をうけ、その水質が微妙に変化
する（図 2-1-26）。すなわち、豊水期には水位は地表か
らあける程になり、pH は酸性を示す。満水期には、
水位は泥炭層の位置まで落ちこみ、pH はアルカリ性となり、泥炭帯特有の鉱分の多い“赤い
水”となる。pH が酸性になる主な原因は硫酸イオンの増大によるともいわれている。

（島居栄一郎）

参考文献

（1）山口久之助ほか（1959）：苦小牧工業地域の地下水，北海道立地下資源調査所報告 22
（2）山口久之助ほか（1965）：北海道水理地質調査第 13 号「苦小牧・室蘭」および同説明書，北海道
立地下資源調査所
（3）山口久之助・松下勝秀（1972）：苦小牧工業部大規模工業基地開発調査資料（地下構造および地下水
について）北海道開発局宮原開発調査課
（4）山口久之助（1978）：苦小牧工業の地下水について，北海道立地下資源調査所報告 50
（5）山口昇一（1960）：五万分の 1 地質図。鶴川，地質調査所

8. 函館平野

（1）地形・地質

函館平野は亀田平野あるいは大野平野とも呼ばれ、渡島半島で最大の平野である。平野は函館
湾に向かって扇形に開いた形で発達しており、沖積低地，扇状地，砂丘地，洪積台地などからな